8,573 research outputs found

    Surface Plasmon Dispersion Relations in Chains of Metallic Nanoparticles: Exact Quasistatic Calculation

    Full text link
    We calculate the surface plasmon dispersion relations for a periodic chain of spherical metallic nanoparticles in an isotropic host, including all multipole modes in a generalized tight-binding approach. For sufficiently small particles (kd≪1kd \ll 1, where kk is the wave vector and dd is the interparticle separation), the calculation is exact. The lowest bands differ only slightly from previous point-dipole calculations provided the particle radius a≲d/3a \lesssim d/3, but differ substantially at smaller separation. We also calculate the dispersion relations for many higher bands, and estimate the group velocity vgv_g and the exponential decay length ξD\xi_D for energy propagation for the lowest two bands due to single-grain damping. For a/d=0.33a/d=0.33, the result for ξD\xi_D is in qualitative agreement with experiments on gold nanoparticle chains, while for larger a/da/d, such as a/d=0.45a/d=0.45, vgv_g and ξD\xi_D are expected to be strongly kk-dependent because of the multipole corrections. When a/d∼1/2a/d \sim 1/2, we predict novel percolation effects in the spectrum, and find surprising symmetry in the plasmon band structure. Finally, we reformulate the band structure equations for a Drude metal in the time domain, and suggest how to include localized driving electric fields in the equations of motion.Comment: 19 pages 3 figures To be published in Phy. Rev.

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos

    Full text link
    Hierarchical structure formation leads to a clumpy distribution of dark matter in the Milky Way. These clumps are possible targets to search for dark matter annihilation with present and future γ\gamma-ray instruments. Many uncertainties exist on the clump distribution, leading to disputed conclusions about the expected number of detectable clumps and the ensuing limits that can be obtained from non-detection. In this paper, we use the CLUMPY code to simulate thousands of skymaps for several clump distributions. This allows us to statistically assess the typical properties (mass, distance, angular size, luminosity) of the detectable clumps. Varying parameters of the clump distributions allows us to identify the key quantities to which the number of detectable clumps is the most sensitive. Focusing our analysis on two extreme clump configurations, yet consistent with results from numerical simulations, we revisit and compare various calculations made for the Fermi-LAT instrument, in terms of number of dark clumps expected and the angular power spectrum for the Galactic signal. We then focus on the prospects of detecting dark clumps with the future CTA instrument, for which we make a detailed sensitivity analysis using open-source CTA software. Based on a realistic scenario for the foreseen CTA extragalactic survey, and accounting for a post-trial sensitivity in the survey, we show that we obtain competitive and complementary limits to those based on long observation of a single bright dwarf spheroidal galaxy.Comment: 29 pages + appendix, 15 figures. V2: Sects. 3.3, 4, and 5.3 extended, results unchanged (matching accepted JCAP version

    Blazes: Coordination Analysis for Distributed Programs

    Full text link
    Distributed consistency is perhaps the most discussed topic in distributed systems today. Coordination protocols can ensure consistency, but in practice they cause undesirable performance unless used judiciously. Scalable distributed architectures avoid coordination whenever possible, but under-coordinated systems can exhibit behavioral anomalies under fault, which are often extremely difficult to debug. This raises significant challenges for distributed system architects and developers. In this paper we present Blazes, a cross-platform program analysis framework that (a) identifies program locations that require coordination to ensure consistent executions, and (b) automatically synthesizes application-specific coordination code that can significantly outperform general-purpose techniques. We present two case studies, one using annotated programs in the Twitter Storm system, and another using the Bloom declarative language.Comment: Updated to include additional materials from the original technical report: derivation rules, output stream label

    Identifying Independence in Relational Models

    Full text link
    The rules of d-separation provide a framework for deriving conditional independence facts from model structure. However, this theory only applies to simple directed graphical models. We introduce relational d-separation, a theory for deriving conditional independence in relational models. We provide a sound, complete, and computationally efficient method for relational d-separation, and we present empirical results that demonstrate effectiveness.Comment: This paper has been revised and expanded. See "Reasoning about Independence in Probabilistic Models of Relational Data" http://arxiv.org/abs/1302.438

    Count-Free Single-Photon 3D Imaging with Race Logic

    Full text link
    Single-photon cameras (SPCs) have emerged as a promising technology for high-resolution 3D imaging. A single-photon 3D camera determines the round-trip time of a laser pulse by capturing the arrival of individual photons at each camera pixel. Constructing photon-timestamp histograms is a fundamental operation for a single-photon 3D camera. However, in-pixel histogram processing is computationally expensive and requires large amount of memory per pixel. Digitizing and transferring photon timestamps to an off-sensor histogramming module is bandwidth and power hungry. Here we present an online approach for distance estimation without explicitly storing photon counts. The two key ingredients of our approach are (a) processing photon streams using race logic, which maintains photon data in the time-delay domain, and (b) constructing count-free equi-depth histograms. Equi-depth histograms are a succinct representation for ``peaky'' distributions, such as those obtained by an SPC pixel from a laser pulse reflected by a surface. Our approach uses a binner element that converges on the median (or, more generally, to another quantile) of a distribution. We cascade multiple binners to form an equi-depth histogrammer that produces multi-bin histograms. Our evaluation shows that this method can provide an order of magnitude reduction in bandwidth and power consumption while maintaining similar distance reconstruction accuracy as conventional processing methods.Comment: Accepted for presentation at the 2023 International Conference on Computational Photograph

    Data Near Here: Bringing Relevant Data Closer to Scientists

    Get PDF
    Large scientific repositories run the risk of losing value as their holdings expand, if it means increased effort for a scientist to locate particular datasets of interest. We discuss the challenges that scientists face in locating relevant data, and present our work in applying Information Retrieval techniques to dataset search, as embodied in the Data Near Here application
    • …
    corecore